SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

Course Title:	CONSTRUCTION MATERIALS II
Code No.:	ARC 134-3
Program:	CIVIL/CONSTRUCTION
Semester:	TWO
Date:	JUNE 1985 WINTER
Author: -	W.R. DAVIES

New:_____ Revision:__X___

APPROVED:

Chairperson J Date S5/06/06

CONSTRUCTION MATERIALS II

ARC 134-3

Course Name

Course Number

PHILOSOPHY/GOALS:

The student should further develop an appreciation of the importance of quantifying the various properties of construction material and should always express an evaluation of such materials in a numerical form.

- 2 -

.

The student should further develop a commercial sense in appraising and evaluating construction materials.

The student should further develop the ability to work independently in a technical situation.

The student must learn to express technical data in a clear and concise form in both a verbal and written form.

METHOD OF ASSESSMENT (GRADING METHOD):

Laboratory Investigation

1.	a) Timber in compression	Marks 5
	b) Concrete in compression c) Steel in tension	5 10
	d) Timber in bending	10
	e) Concrete in bending	10
	f) Steel in bending	10
2.	Plasticity Index	10
3.	Soil Density	10
4.	In-situ soil density - volumeasure	5
5.	Asphalt - penetration	5
6.	Asphalt - flash and fire	5

TH	OD OF ASS	SESSMENT	Continued		
7.	Asphalt	- softening	point	'	5
8.	Asphalt	ductility	2		5
9.	Asphalt	viscosity	•		5
					100

- 3 -

5

TEXT:

Highway Materials, Soils and Concretes - Harold Atkins - Reston

Asphalt Handbook - American Asphalt Institute

Asphalt Concrete Design - American Asphalt Institute

REFERENCE:

STM'S

Asphalt Handbook

CONSTRUCTION MATERIALS ARC 134-3

Topic No.	Periods	Topic Description
1	25	Strength of Materials -
		"E" for timber in compression
		"E" for concrete in compression
		Timber in bending
		Steel in bending
		Concrete in bending
2	14	Soil Mechanics -
		Earth's crust soil structure
		Grain analysis
		Moisture density relationship
		In-situ density - volumeasure
3	25	Asphalt Technology -
		Manufacture
		Material properties
		Mix selection
		Mix Design Marshal Method
		Mix Analysis

STRUCTION MATERIALS

ARC 134-3

GENERAL OBJECTIVES:

- The student should further develop an appreciation of the importance of quantifying the various properties of construction material and should always express an evaluation of such materials in a numerical form.
- 2. The student should further develop a commercial sense in appraising and evaluating construction materials.
- The student should further develop the ability to work independently in a technical situation.
- 4. The student must learn to express technical data in a clear and concise form in both a verbal and written form.

SPECIFIC OBJECTIVES:

Unit 1 - Materials General

Using a universal test machine and the appropriate strain gauge, the modulus of elasticity must e determined for:

1/1 timber in compression
1/2 concrete in compression
1/3 steel in tension

From the simple beam formula and a given deflection formula, the ultimate tensile stress and the modulus of elasticity must be determined for:

1/4 timber
1/5 concrete
1/6 steel

Unit 2 - Asphalt Technology

- 2/1 The student must draw and label a flow diagram for the recovery of asphalt from crude oil.
- 2/2 The student must distinguish between an asphalt cement, liquid asphalt and emulsified asphalt.

Experimentally, and in accordance with the latest ASTM's, the student must determine the following:

- 2/3 The penetration value of two asphalt cements.
- 2/4 The flash and fire points for an asphalt cement.
- 2/5 The softening point for an asphalt cement.
- 2/6 The ductility value for an asphalt cement.
- 2/7 Experimentally verify viscosity value.
- 2/8 For a given traffic density, select an aggregate quality.
- 2/9 Determine the grading of the available aggregate, compute the necessary correction, adjust the g rade and experimentally verify the resulting sample.
- 2/10 Calculate, apportion and prepare all ingredients required for a Marshal test.
- 2/11 Using the Marshal apparatus, plot the stability and flow values for at least four values of vitumen content.
- 2/12 Determine the bulk density of the four samples.
- 2/13 From these results, recommend a mix design for the pavement.
- 2/14 Verify the bitument content of at least one concrete sample using the centrifuge.
- 2/15 Maintain a neat, comprehensive record of all laboratory work.

Unit 3 - Soils

- 3/1 Identify three classes of rock.
- 3/2 Establish the plasticity index of a soil.
- 3/3 Distinguish between the two main types of subsoil.
- 3/4 Determine the optimum moisture content for a compacted soil.
- 3/5 Determine the maximum dry density for a given subsoil.
- 3/6 Classify a given soil by means of a grain analysis.

CONSTRUCTION MATERIALS

ARC 134-3

CRITERIA FOR ASSESSMENT OF GRADES

ITEM

* OF TOTAL GRADE ALLOCATION

Laboratory Investigation

1. Modules of Elasticity for:

	 a) Timber in compression b) Concrete in compression c) Steel in tension d) Timber in bending e) Concrete in bending f) Steel in bending 	4 4 4 4 4 4
2.	Plasticity Index	10
3.	Soil density - Moisture content	10
1.	In-situ soil density - volumeasure	2
5.	Asphalt - penetration	4
б.	Asphalt - flash and fire	4
7.	Asphalt - softening point	4
8.	Asphalt ductility	4
9.	Asphalt viscosity	4
0.	Marshal test	15
1.	Centrifuge test	3

Written Test

1

1

12.	Asphalt Technology		4
13.	Gypsum and lime	,	4
14.	Brickwork and Blockwood		4
1	Plastics		<u>4</u>
			100%

- 7 -